
A Visual Interface Designed for Novice Users to find Research Patient
Cohorts in a Large Biomedical Database

Shawn N. Murphy, MD, Ph.D., Vivian Gainer, MS, and Henry C. Chueh, MD, M.S.
Laboratory of Computer Science, Massachusetts General Hospital, Boston, MA.

One of the more difficult tasks of informatics is
allowing for the navigation of complex databases. At
Partners Healthcare Inc. we have developed an
analytical database to allow for searching clinical
data to obtain cohorts of patients for research
studies. The characteristics of the patients within the
cohorts must often comply with complex inclusion
and exclusion criteria. The users of the database are
research clinicians, often with no prior database
experience. To assist these clinicians in finding their
patient cohorts, we constructed a Querytool that they
use directly to find their desired populations. In
order to understand if the Querytool could indeed be
used successfully by novice users, we analyzed the
first 10 queries of 219 users. This analysis was able
show that novice users are able to achieve excellent
success using the Querytool.

INTRODUCTION

At Partners Healthcare Inc. (which includes the
Massachusetts General Hospital and the Brigham and
Women’s Hospital) we have an analytical database
named the Research Patient Data Registry (RPDR)
that allows for searching of clinical data. The RPDR
contains diagnoses, medications, procedures, and
laboratory studies from administrative and
clinical databases. The patients are cross-
referenced across institutions and their
demographics provided by an Enterprise
Master Patient Indexing service. Associated
providers, dates, locations of service, and
other visit-related information accompany the
above items as they are fed into the system.
The number of patients in the database
exceeds 1.8 million. The number of patient-
concept pairs, or clinical “facts” about the
patients, exceeds 450 million.

Tools for querying healthcare data have
traditionally been text based (1), although
graphical interfaces have been pursued (2).
An analysis of the text based queries that
found research cohorts from our old COSTAR system
had revealed a construction pattern that could be
satisfied with a simple visual interface (3). The
pattern consisted of finding intersections of groups of
items, where the items could be patient

demographics, providers, clinical concepts (such as
diagnoses or procedures), and visit characteristics.
These groups of items were often constrained by
dates and associated values.

Unfortunately, the training needed to use the
COSTAR system prohibited a novice user from
performing queries themselves; thus an expert was
needed to perform every request. This approach
could not scale to the entire Partners Healthcare
Corporation, where we currently get 100-200 queries
per week. Therefore, we set out to build a Querytool
that did not require the researchers to become expert
users of the system. The challenge was to allow a
novice population of computer users to navigate the
metadata and formulate the queries without our
intervention.

Metadata navigation would be the first challenge for
our users. Metadata consists of data about the data,
and is familiar to most of us as “vocabularies”. There
are many national and international vocabularies,
such as ICD9, CPT4, READ, SNOMED, NDC, and
LOINC to only name a few. Each vocabulary has its
own nuances, which must be respected while doing
queries, such as ICD9 codes with categories that can

Figure 1 – A hierarchical tree of items for users to
choose from is present in the pane along the left, and
a set of panels to roughly model a Venn-diagram are
present in the upper right. The “New group” button
(circled) creates new query-panels.

be used themselves for coding, and NDC codes that
can be reused so that their meaning may change from
year to year.

Construction logic is the second challenge. Patient
inclusion and exclusion criteria for most
research studies are jumbles of different types
of information. For example, a study may need
patients of a certain age with a particular
diagnosis but who are not on certain
medications. Although the logic can be
difficult, the Querytool needed to be able to
accommodate it, and make it intuitively easy to
construct. In this paper, we outline the details
of the Querytool we developed and provide an
analysis to support that it can be used
successfully by novice users.

METHODS

The model for the user interface is shown in
Figure 1. The hierarchical tree of items is the
“vocabulary” of the database. There are fixed
vocabularies and user created vocabularies. All the
vocabularies appear in a typical tree-view. Even
though the underlying structure of the database places
the items in completely different tables and structures,
to the user everything appears to be just another item
in the tree to be dragged into the logic panels.
Behind the scenes, each query item is associated with
underlying metadata to help create the query
statement that will be submitted to the database. The
user’s only choice is what level in the hierarchy to
select. Once an item is dragged to the query panels,
the user is able to add constraints for the items. The
nuances of the vocabularies are hidden at this stage,
though they may be manipulated to some extent in the
constraints. All items act by default to select the
parent code and all its children.

User-created vocabularies consist of “Custom
Queries” and “Patient Sets.” Any previous query can
be saved as a “Custom Query” and used as an item in
a new query. “Custom Queries” may produce
different numbers of patients when they are run
within another query, based upon whether the RPDR
data has been updated since the last time it was run.
“Patient Sets” are slightly different than “Custom
Queries”, because they represent a group of patients
from a previous query that will not change when the
RPDR is updated.

There is also a simple “Find” function to allow a
classical alphabetic lookup of items. This was used
more often that the tree-view. One may argue that the

tree-view is not really necessary. However, the tree-
view was found to help orient users to the hierarchical
structure of the items, and a common behavior was to
use the tree-view for early queries, and then the
“Find” for more specific queries.

Figure 2 – The “Find” tab (circled) can be used to
access a function that will alphanumerically search
the vocabularies. Also shown is the “Constraints”
options which allows dates and special
characteristics associated with the semantic type (in
this case diagnoses) to be chosen. Available for
diagnoses are primary/secondary/admission status of
the diagnosis, and an option to search based only
upon the parent code (and not the children). Also
circled (towards the right) is the timing option
selector.

Finally, there is a “Previous Queries” tab that allows
users to bring up an old query in the Querytool and
use it as a template for new queries. It was found that
about half of new queries are based on old queries,
making it an important feature of the Querytool. One
could gain a similar functionality from the “Custom
Query” feature, but apparently the “Custom Query”
feature is conceptually more difficult to use.

Items are dragged from the Query Items and Find
panels on the left into the waiting Venn-diagram-like
panels on the right. If items are dragged into the
same panel, they are logically OR’d together. Items
dragged into different panels are logically AND’d
together. In this way, the panels are roughly a visual
representation of a Venn-diagram. Up to 25 different
query-panels are available by clicking the “New
Group” button. If an item is associated with a value,
like a laboratory test, then a Value selection box
comes up instantly with the drag and drop, as shown
in figure 3. The value selection box allows for “No

value”, meaning all tests are considered valid, a
“High/Low” selection where the flag (if it exists)
from the performing lab will be used, or an inequality
number, which allows the user to specify tests greater
than, less than, or between specified values.

Figure 3 - The “Previous Queries” tab is selected on
the left large panel in this figure. Also shown are the
“Value” options, which are described further in the
text. Note that units for the values may be selected in
the lower drop-down selector.

Enumerated test results are shown as a list of items,
rather than the inequality number, which allows the
selection of specific enumerated values. All items can
be constrained through a “Constraints” box that is
available by right-clicking an item. This allows
constraints by dates or by coding system specific
options. A Group can also be made into a logical
NOT by choosing to invert the items.

There is a timing specification that applies to the
query in its entirety. Either all the Groups must have
occurred in the same visit, or the Groups may have
occurred in any visit. For example, if one drags
“Diabetes” and “Emergency Room” into separate
groups, and the user specifies they must have
occurred in the same visit, then the patient must have
been seen in the emergency room for diabetes. If
they specify that the Groups could occur in any visit,
then anyone who was seen in the emergency room for
anything and also has diabetes will be selected from
the database. As is shown in the analysis below, this
appeared to be a difficult concept of the Querytool for
our users to grasp.

When the query is run, aggregate numbers about the
patient population matching the query criteria are
returned in the display widgets as described in a prior

publication (4). As described in (4), we obfuscate the
results somewhat to prevent any possibility that a
single individual may be identified through the
Querytool interface. Once a set of patients is
obtained with the Querytool and the user is satisfied

they match the general characteristics required
for their research study, the individual patients
may be identified, provided the Institutional
Review Board has approved the study. The
identified list of patients is delivered to the
researcher in tables that include all electronic
data for those patients, including electronic data
pulled from hospital systems not yet
incorporated into the data warehouse. In this
manner, data marts of electronic information on
targeted patient populations can be obtained
and distributed.

To support the simple drag and drop visual
model, as well as the identification and
distribution of patient data, a three-tier software
architecture was employed. The user interface

was developed in Visual Basic and distributed as an
ActiveX object embedded in an HTML page. The
middle layer was developed in Java and Microsoft
COM. The queries are represented throughout their
lifetime as XML objects, and a Microsoft SQL 2000
database is queried and managed in standard SQL.

RESULTS

We performed a usability analysis of the Querytool.
All queries submitted to the database are saved and
thus can be analyzed. Because we were primarily
interested in the naïve user, we analyzed only the first
10 queries per user. A number of important
assumptions were made in performing the analysis:

1) That we could deduce the patient population
the user was attempting to retrieve by just
looking at the query itself. This was
supported by the observation of commonly
occurring patterns in “standard” queries.

2) That a user was not being “coached” by a
more experienced user at the time of the
queries. Due to the widely dispersed
locations of our users, this was probably a
reasonable assumption.

3) That the results do not simply reflect the high
or low quality of our help and tutorial web
pages. We indeed invested a considerable
amount of time and effort in developing these
two items. Overall about half the users
accessed this material at some time.

We analyzed the queries of 219 users. Because many
users never performed the full 10 queries, the actual
number of queries analyzed was 1,440 queries rather
than the expected 2,190 queries. The results are
shown in the table below. Errors were classified as
logic errors, where the user did not construct the
query logic properly; timing errors, where the user
did not chose the correct timing specification for the
query; and “other” errors. Other errors consisted
mostly of inconsistent uses of date constraints, or
obvious incorrect choices of proper items. We
review queries submitted for Identified Patients with
the user prior to returning the Identified Patients.
These queries were not included in the analysis.

Percent of QueriesType of Error
Before Fixes After Fixes

No error 83.8% 89.4%
Timing error 5.8% 1.1%
Logic error 6.6% 5.7%
Other errors 3.8% (no fixes applied)

Table 1

As can be seen in Table 1, the greatest number of
errors was made when choosing the timing model or
when creating the logic for the query. We added
some “hints” to the Querytool to force the users to
rethink their choices before submitting the query.

To fix timing errors, we created the screen in Figure
4. When a user pressed the “Run Query” button, a
screen would always pop up to ask for a name for the
query, and we modified it to include the explanation
of the timing models and to give them the opportunity
to change the timing model. As can be seen by

Figure 4 – Screen created to fix timing errors.

comparing the “Before Fixes” to the “After Fixes”
columns, the number of errors became considerably
smaller following the fix. For those people who still
made errors, we followed-up to ask why (a regular
part of our query review before they are submitted for
identified patients). Most stated that they had read
but did not understand the message. We tried several
variations of the message on novice users, but could
not arrive at an obviously better message. While
analyzing large numbers of queries, we did find some
heuristics, which may allow us to catch more timing
errors. For example, when selecting the following
sets of items, users probably intended that all the
items should occur in the same visit:
• if two encounter-type items such as location of

service, or inpatient/outpatient are logically
AND’d together;

• if an encounter-type variable is constrained by
dates and logically AND’d to other items;

• or if an encounter-type variable is logically
AND’d to a procedure that is constrained by
dates;

This would suggest that we could issue a special
warning in these cases.

Another set of frequent errors was logic errors.
Occasionally a query panel was incorrectly inverted
(a logical NOT), or a “Custom Query” was used
incorrectly in a query, but usually the problem was
that the Venn-diagram they had essentially created
did not make sense. For example, often all items
were simply placed in the first query panel, even
though the items needed to be logically AND’d
together. So a user would place “Emergency Ward”
and “Diabetes” both in the first panel, essentially
giving them everyone who ever went to the
emergency ward OR who ever had diabetes, probably
not what they wanted. In some ways, it is outstanding
that people could even navigate the Querytool logic
panels at all, considering that the help screens were
only accessed about half the time. Of note, on the
bottom of the query-panels were tiny help messages
(see figure 1 for best view). When the query-panel is
empty they state:

And when items are placed in a query-panel they state
(in this example panel #1 states):

To combat logic errors we added two features. First,
we placed the “New Group” button on top of query-
panel #3, because using the top-placed arrow to get a

new query panel was too obscure for many users, and
when some users ran out of the 3 panels they would
just put all remaining items in query-panel #3.
Second, we used some heuristics so that if
semantically dissimilar items were placed in the same
query-panel, a pop-up message would appear. For
example, placing “Emergency Room” and “Male” in
the same query-panel would bring up a message box.
The message box warns that these items are usually
not logically OR’d together, reflecting that one
belongs to the semantic group of Demographics and
one belongs to the semantic group of Encounter
detail. Most semantically dissimilar items that form
illegal combinations will bring up the warning box.
However, the users can override the warning, and
interestingly, the logic errors were not found to
significantly decrease before and after the warning
box was added.

Other than the two warning/explanatory panels
discussed above, we did not make any further
attempts to correct peoples actions in the course of
running the tool. Users would occasionally select
items lower in the hierarchies than items that had
already been selected and drag them all into the same
query-panel, but this did not affect the query results
and so was of no consequence. Something that
became apparent during the analysis but we did not
quantify was that often the users would use the first
few queries to experiment with the Querytool, often
with errors, and thereafter would use it error free.

DISCUSSION

Overall the Querytool was extremely successful in
directing users to choose the correct items, and
especially after enhancements, getting them to
construct the proper logic and timing for the queries.
The necessary logic was generally learned quickly.
The Querytool proved to be an excellent way for
naïve users to obtain a first cut at their research
cohort. When starting from a patient base of over 1.8
million, narrowing it down to around 100 - 1000
patients gives a manageable set of charts to go
through in detail. The Querytool has achieved
excellent acceptance at Partners Healthcare Inc. and
is the most prevalent way of obtaining research
cohorts.

A weakness in the Querytool is the lack of temporal
resolution using the simple approach described in this
paper. We tried to add a timing option of “ordered
visit”, where the events in query-panel #1 needed to
proceed the events in query-panel #2, which needed
to precede the events in query-panel #3, etc. The

difficulty with this approach is that the granularity of
timing varies widely in the data. Furthermore, coding
does not generally specify when a diagnosis started,
and some data such as demographics are fed to us as
“timeless.” The ordered visit option virtually never
gave satisfactory results to our users and was
eventually abandoned. Querytools that need to focus
on timing will probably need to take a different
approach than that taken here, displaying a richer set
of data so that judgement calls can be made regarding
the timing of events. Most promising would be a
timeline display of data that could allow for visual
comparisons of events, as in the Lifeline software
produced by Plaisant et al (5).

The ability of a large institution such as Partners
Healthcare Inc. to capitalize on its huge patient base
for research gives it an enormous advantage in the
research marketplace. The Querytool allows any
investigator to be empowered to utilize this patient
resource, rather than just those who can afford a team
of database analysts. It has been a very rewarding
experience to help the research teams in this regard.

This work was supported by Partners Healthcare Inc.

References

1. Nigrin, D.J., Kohane, I.S. Data Mining by
Clinicians. Proc AMIA Symp. 1998;957-61.

2. Banhart, F., Klaeren, H. A Graphical Query
Generator for Clinical Research Databases. Meth
Inform Med 1995; 34:328-39.

3. Murphy, S. N., Morgan, M. M., Barnett, G. O.,
Chueh, H. C. Optimizing Healthcare Research
Data Warehouse Design through Past COSTAR
Query Analysis. Proc AMIA Fall Symp. 1999;
892-6.

4. Murphy, S.N., Chueh, H (2002). A Security
Architecture for Query Tools Used to Access
Large Biomedical Databases. AMIA, Fall
Symposium 2002, pages 552-556.

5. Plaisant, C., Mushlin, R., Snyder, A., Li, J.,
Heller, D., Shneiderman, B. LifeLines: Using
Visualization to Enhance Navigation and
Analysis of Patient Records, AMIA, Fall
Symposium 1998, pp. 76-8.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: AMIA 2003 Symposium Proceedings − Page 489
	02: AMIA 2003 Symposium Proceedings − Page 490
	03: AMIA 2003 Symposium Proceedings − Page 491
	04: AMIA 2003 Symposium Proceedings − Page 492
	05: AMIA 2003 Symposium Proceedings − Page 493

